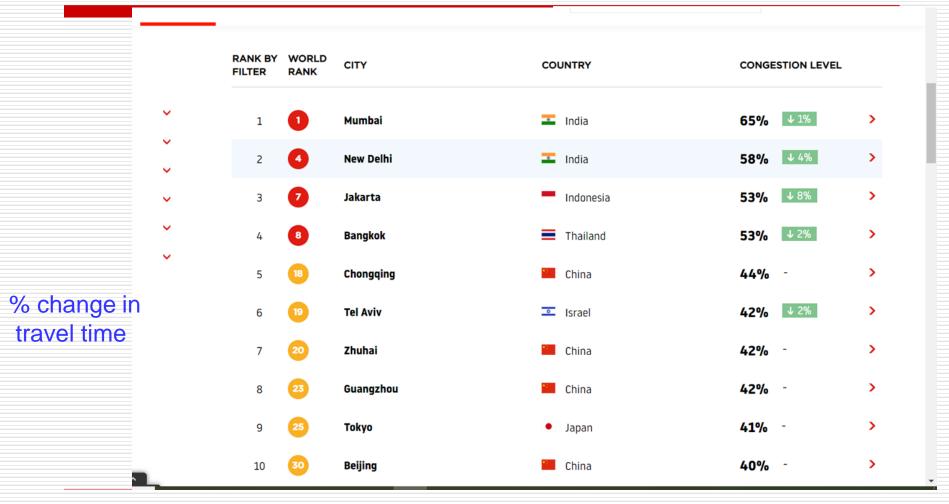
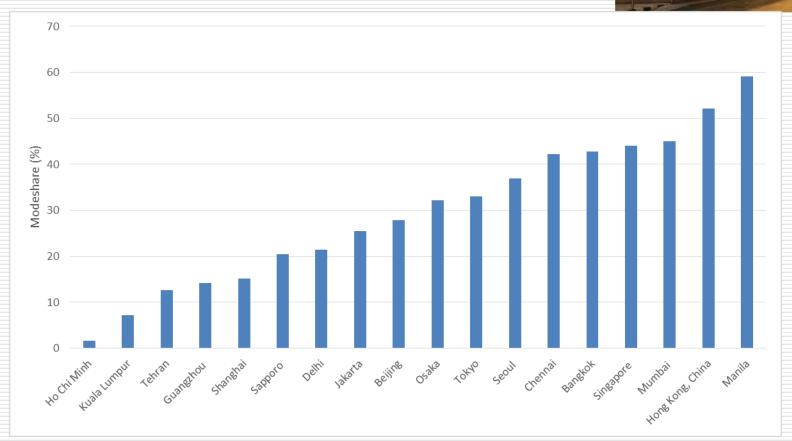
Specialized Technical Session on Sustainable Transport

25 November 2019, Victoria Falls


Sustainable Urban Transport Index (SUTI) for Asian Cities

Madan B. Regmi, DEng Transport Division UNESCAP, Bangkok

Traffic Congestion in Asian Cities

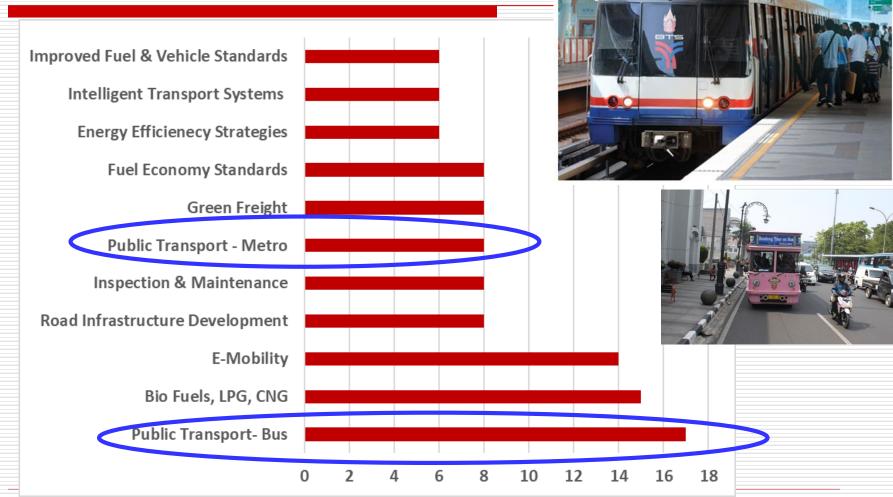

Rail based MRT in Asian Cities

Public transport mode share in Asian cities

Urban Mobility in Asian cities

- Cities with good example of public transport: Tokyo,
 Singapore, Seoul, Hong Kong, China
- Mass transit system: Bangkok, Beijing, Delhi, Jakarta, Kuala Lumpur, Moscow, Tehran, Lucknow, etc.
- Bus Rapid Transit: Many cities in China (20) and India (8)
 - 44 Asian cities, 1624 route Km, 9.47 mil passengers/day
 - Tehran highest capacity-2 m, Jakarta longest route-207 km
- Cities of least developed and land locked countries
 - Mass transit: Almaty, Baku, Tashkent and Yerevan
 - Public mass transport in still developing stage
- Non-Motorized Transport: A significant population depends on walking & bicycling
- ☐ Bus service, para-transit, private vehicles

Capital costs of development of different mass transit systems


City	Type of system	Length, Km	Cost per km	
			(mil \$/km)	
Janamarg, Ahmedabad	BRT	82	2.4	
Kuala Lumpur (PUTRA)	Elevated rail	29	50.0	
Kuala Lumpur Monorail	Monorail	8.6	38.1	
Bangkok (BTS)	Elevated rail	23.7	72.5	
Beijing Metro	Metro rail	113	62.0	
Shanghai Metro	Metro rail	87.2	62.0	
Bangkok MRTA	Metro rail	20	142.9	
Hong Kong Subway	Metro rail	82	220	

Source: Wright and Hook, 2007 and D. Hidalgo and A. Carrigan, 2010

Transport Mitigation Strategies of Asia-

Pacific Countries

Sustainable Urban Transport Index (SUTI)

- To measure sustainability of urban transport and progress towards SDG target 11.2
- To help summarize, compare and track the performance of urban transport in cities
- To facilitate discussion to develop plans and policies to improve urban transport
- Simple Approach:
 - Not too many indicators
 - Not complex calculations,
 - ☐ Simple, based on existing methodology, policies
- □ Framework: Sustainable Development, Sustainable Mobility, relevant SDG targets

Identification of potential indicators

- Extensive literature review of indicators
- 420 individual urban transport indicators identified
- Reduced to a shortlist of 20 most relevant indicators
- Subjectively scored using two sets of criteria
 - Relevance for Sustainable Transport framework
 - Methodological quality
- Consultative process with cities, countries and experts
- Reviewed & agreed at two UNESCAP meetings:
 - Expert Group Meeting, Kathmandu, September 2016
 - Regional Meeting, Jakarta, March 2017
- Resulting list of 10 indicators in four domains :
 - Transport system, Social, Economic & Environmental

10 SUTI Indicators

No Indicators	Indicatous	Measurement units	Weights	Range	
	indicators			MIN	MAX
	Extent to which transport plans cover public				
1	transport, intermodal facilities and infrastructure	0 - 16 scale	0.1	0	16
	for active modes				
2	Modal share of active and public transport in	Trips/mode	0.1	10	90
	commuting	share			
3 Convenient access to public	Convenient assess to nublic transport service	% of	0.1	20	100
	Convenient access to public transport service	population			
4 Public transport quality and reliability	Public transport quality and reliability	% satisfied	0.1	30	95
		, , , , , , , , , , , , , , , , , , , ,	V. –		
5	Traffic fatalities per 100,000 inhabitants	No of fatalities	0.1	10	0
6	Affordability – travel costs as part of income	% of income	0.1	35	3.5
7 Operational costs of the p	Operational costs of the public transport system	Cost recovery	0.1	22	100
	Operational costs of the public transport system	ratio			
8 Investment in public tran	Investment in nublic transportation systems	% of total	0.1	0	50
	investment in public transportation systems	investment			
9	Air quality (pm10)	μg/m3	0.1	150	10
	-1	F-0/	<u> </u>		
U 110	Greenhouse gas emissions from transport	CO2 Eq. Tons	0.1	2.75	0 10
H	SUM		1.00		10

Normalization & SUTI Calculation

Linear Normalization of indicators 1-100 scale

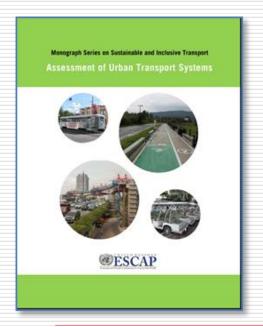
$$Z_{i,c} = \frac{(X_{i,c}) - (X_{min,i})}{(X_{max,i}) - (X_{min,i})} * 100$$

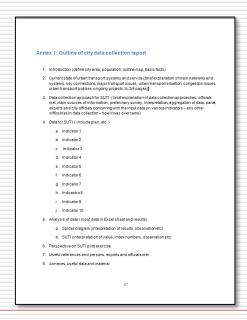
$$SUTI = \sqrt[10]{i1 * i2 * i3 ... i10}$$

Where i1...i10 are the indicators

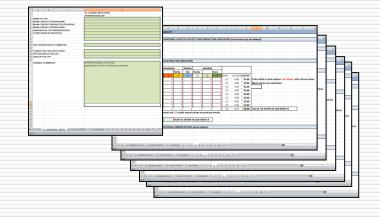
Geometric mean method chosen (similar to HDI)

'Equal weight' to each SUTI indicator is applied

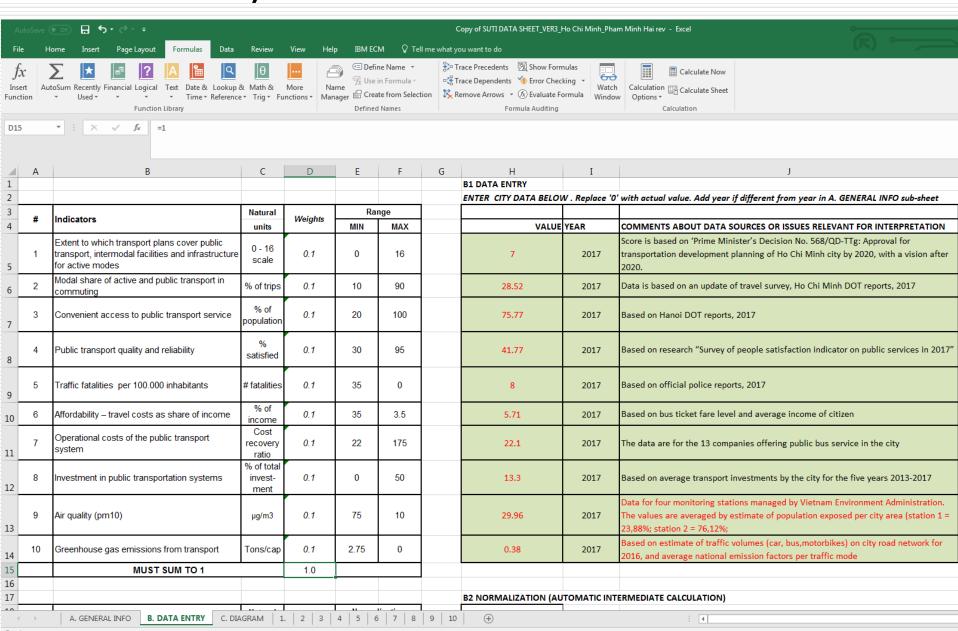

SUTI-Publication, Data Collection Guidelines & Excel Calculation Sheet


Monograph Series- Assessment of Urban Transport Systems

http://www.unescap.org/publications/monograph-series-sustainable-and-inclusive-transport-assessment-urban-transport-systems

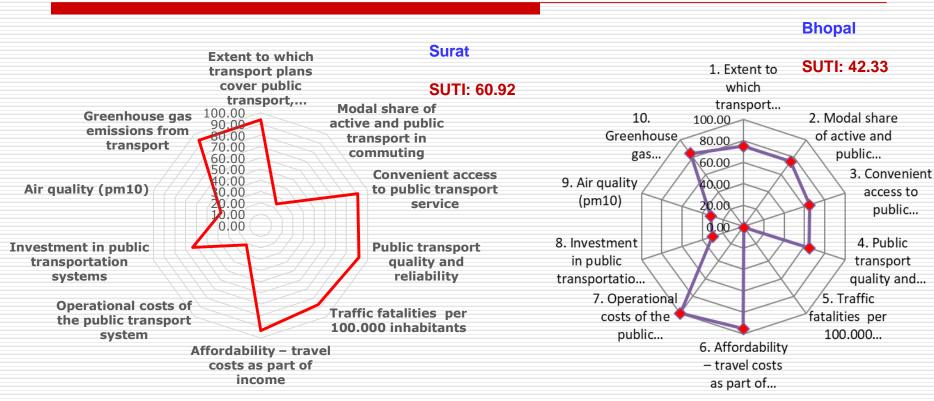

Data Collection Guideline

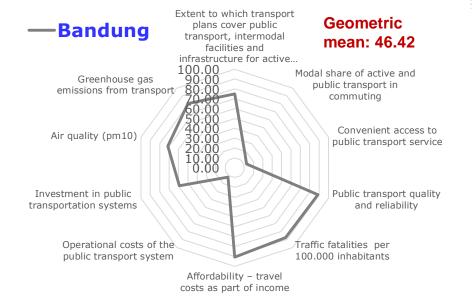
http://www.unescap.org/events/capacity-building-workshop-sustainable-urban-transport-index-suti

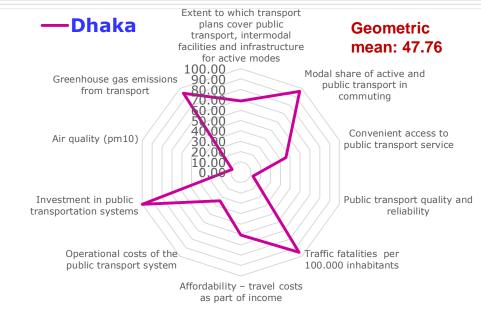


SUTI Excel Sheet

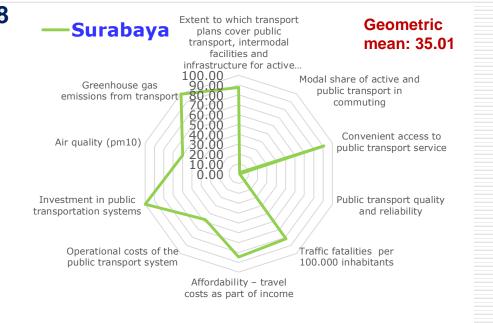
Data entry and normalization

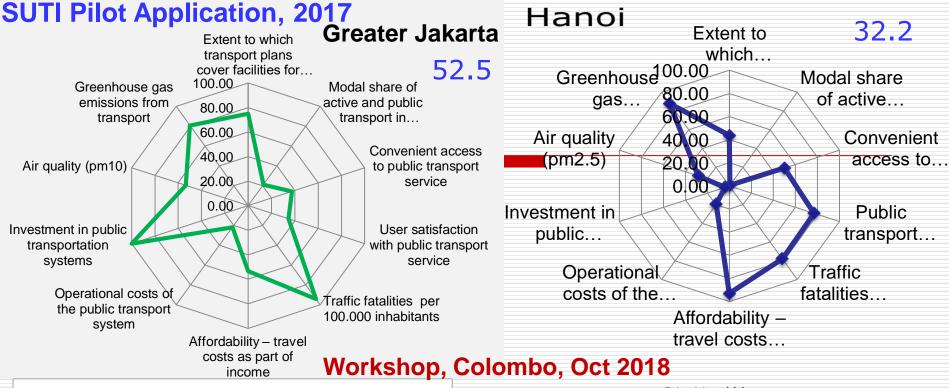


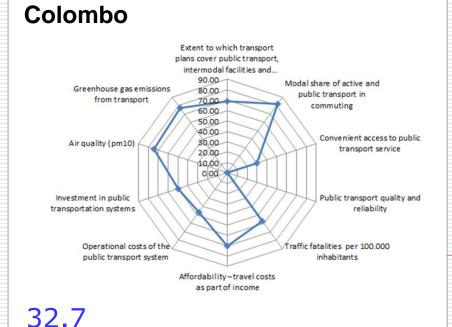


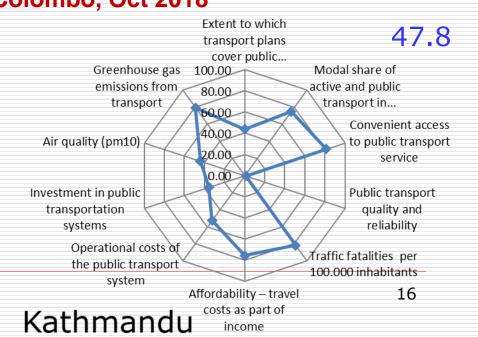


SUTI Assessment in Asian Cities




Regional SUTI Workshop, Colombo, 2017 Workshop on Urban Mobility, Dhaka, Sept. 2018 Regional Workshop Hanoi, Hanoi, 2019





Application of SUTI in 2018 Ho Chi Minh Extent to which transport Geometric plans cover public mean: 24.97 transport, intermodal facilities and infrastructure for active... Modal share of active and Greenhouse gas public transport in emissions from transport/ commuting Convenient access to Air quality (pm10) public transport service Investment in public Public transport quality transportation systems and reliability Operational costs of the Traffic fatalities per public transport system 100,000 inhabitants Affordability - travel costs as part of income

Key findings

- TRANSLAGO
- Much focus on planning but weak implementation
- Low mode share of Public Transport
- Various degree of accessibility
- Public perception low- quality and reliability of service
- Safety looks good- concentration of population
- Low investment in Public Transport
- Mostly affordable but operational costs- mostly subsidized
- Poor air quality
- ☐ GHG from transport still not concern

Innovative Examples

Suroboyo Public Bus

Public Transport-BRT

Purabaya Bus Terminal

Electric Mobility

Concluding Remarks

- □ Focus on implementation of mobility strategies & plans
- Strengthen capacity of different layers of government
- SUTI endorsed as a tool to measure sustainability of urban mobility by the Committee on Transport, 2018
- ☐ Track progress over time (2 yr) & compare with peer cities
- Reporting through Voluntary National Review (VNR) at HLPF
- Data collection, availability and standardization
- Expand application in African cities, countries
- UNESCAP ready to collaborate- with African cities/countries
 & partners-SSATP, ReCAP, UNHABITAT, UNECA

Thank you

regmi.unescap@un.org

